M1

M1.	angle	e ABC = x	M1
		e BAC = x and nate segment theorem	M1
	angle	e $ABC = x$ and e $BAC = x$ and nate segment theorem and two equal angles so isosceles ($AC = BC$)	A1
M2.	(a)	(180 – 38) ÷ 2 71 May be on diagram if no contradiction	
	(b)	ODE = 90 seen or implied or $CDO = 25$ or $COD = 130$ May be on diagram	

DOE = 50 or *CDE* = 115 or 140 seen May be on diagram

M1

A1

B1

M1

A1

[3]

		Additional Guidance 40 with no working seen 115 is B1M1 unless from clearly incorrect working e.g. 115 leading to an answer of 65 is M1 only	B1M1A1	[5]
МЗ.	(a)	108 Opposite angle of a cyclic quadrilateral <i>Strand (i)</i> (add up to 180)	B1	
		Must have 108 Additional Guidance Must see "opposite" and "cyclic" (oe e.g. quadrilateral in a circle)	Q1	
	(b)	125	B1	[3]
M4.	(a)	90 seen or implied 90 \div 6 or 15 or 90 \div 6 \times 5 or 75	B1	
		oe 30 Additional Guidance 30 without working	M1 A1 B1M1A1	

(b) Angle *LMN* = 80

	or angle <i>I</i>	MLP = 58 May be on diagram	M1	
	180 - 80 -	- 58 oe	M1	
	42		A1	[6]
M5.	<i>ABC</i> = 52			
	ADC - 52	May be on diagram	M1	
	<i>BAC</i> = 52 or <i>BAQ</i> = 104			
	or $ACB = 76$	May be on diagram	M1dep	
	PAB = 76			
	or <i>PBA</i> = 76	May be on diagram	M1dep	
	28	<i>Clear evidence that 28 is for angle x</i>	A1	

Additional Guidance Angles may be on diagram ACB = 52 and ABC = 52

M1 only

M1

B1

B1

M6.(a) OCA = 36or ACB = 90or COA = 108or COB = 72or OBC = 54or 90 - 36or $(180 - 72) \div 2$ *OP May be on diagram*

54 A1

(b) (Triangle) *RDC* is isosceles

or RC and RD are equal tangents May be implied from 90 and 45 in triangle RDC

Angle RDC = yor Angle RCD = y

Angle RDC or Angle RCD is 45

and

alternate segment (theorem) stated Strand (ii) Complete reasons with both B marks scored

[5]

		Q1
M7. (a)	56	B1
(b)) 70	B1
	Alternate segment (theorem) <i>Strand (i)</i> <i>Dependent on B1</i>	Q1dep
(c)	2 × 47 or 94	
	or Angle BOA = 47	
	or Angle BOC = 47	
	or Angle BAC = 47	
	or Angle BCA = 47 May be on diagram (obtuse angle)	M1
	90 or right angle symbol seen at A or	
	C	
	or 180 – 90 – 47	
	or (180 – 2 × 47) ÷ 2 oe	MI

M1

					[6]
M8.	(a)	35		B1	
	(b)	40		B1	
		Opposite a	angles of cyclic quad (add up to) 180°		
			0e Strand (i) No pood to montion 190 if angle given on 40		
			<i>Strand (i) No need to mention 180 if angle given as 40</i> <i>Accept 'supplementary' to mean adds to 180.</i>		
				Q1	
	(c)	<i>x</i> = 55			
		<i>y</i> = 110			
		<i>z</i> = 125			
			If answer line blank mark diagram or script. B2 any two correct		
			B2 $y = 110$ and $x + z = 180$		
			B2 $z = 125$ and $y = 2x$		
			B1 any one correct		
			B1 values less than 180 such that $y = 2x$ or $x + z = 180$	B3	[6]
					[0]

M9.

Any one of these equations

2x + y + 20 = 180or x + 2y + y + 40 = 180 or 2x + y + 20 = x + 2y + y + 40or 2x + y + 20 + x + 2y + y + 40 = 360oe

M1

Another of these equations

2x + y + 20 = 180or x + 2y + y + 40 = 180or 2x + y + 20 = x + 2y + y + 40or 2x + y + 20 + x + 2y + y + 40 = 360oe these simplify to ... 2x + y = 160 orx + 3y = 140 orx - 2y = 20 or3x + 4y = 300

equating coefficients and elimination of x or y for their equations

```
e.g.

x + 3y = 140 and 6x + 3y = 480

or

2x + 6y = 280 and 2x + y = 160

rearrangement and substitution for their equations

e.g.

y = 160 - 2x and x + 3(160 - 2x) = 140

or

x = 140 - 3y and 2(140 - 3y) + y = 160

MIdep
```

Allow one numerical error for the 3rd M1, but not an error in method (e.g. adding equations when they ought to be subtracted is an error in method, so M0)

M1

M10.

[5]

5 <i>x</i>	x = 340 or 5y = 120 ft their elimination or substitution	M1dep
<i>x</i> =	= 68 and <i>y</i> = 24	A1
). (a)) Valid reason	
(u)	e.g.1 Triangle <i>OTS</i> is isosceles	
	e.g.2 $OT = OS$	
	e.g.3 OT and OS are radii	B1
(b)) Correct equation	
	e.g.1 $5x = 2(x + 30)$	
	e.g.2 $2.5x = x + 30$	
	e.g.3 $(180 - 2x) + 120 + 5x = 360$	
	e.g.4 x + 30 + x + 30 + 360 - 5x = 360 oe	
	Brackets not needed in e.g.3	M1
	Collects terms for their initial equation	
	e.g.1 $5x - 2x = 60$	
	e.g.2 2.5 $x - x = 30$	
	e.g.3 - $2x + 5x = 360 - 180 - 120$ oe	
	their initial equation must have ≥ 2 terms in x Any brackets must be expanded correctly	M1

A1

M11.(a)

70

[4]

B1

M1

M1dep

(b) ADE = 34or AED = 180 - 70 or 110 or ADC = 180 - 70 - 34 or 76 Angles seen on diagram must be in correct place

ADE = 34 and AED = 180 - 70 or 110

36

A1 [4]