M1.
angle $A B C=x$
angle $B A C=x$ and
alternate segment theorem
angle $A B C=x$ and
angle $B A C=x$ and
alternate segment theorem and two equal angles so isosceles $(A C=B C)$

M2.
(a) $(180-38) \div 2$

71
May be on diagram if no contradiction
(b) $O D E=90$ seen or implied
or $C D O=25$
or $C O D=130$
May be on diagram
$D O E=50$
or $C D E=115$
or 140 seen
May be on diagram

Additional Guidance

40 with no working seen

115 is B1M1 unless from clearly incorrect working
e.g. 115 leading to an answer of 65 is M1 only

M3.
(a) 108

Opposite angle of a cyclic quadrilateral
Strand (i)
(add up to 180)
Must have 108

Additional Guidance
Must see "opposite" and "cyclic" (oe e.g. quadrilateral in a circle)
(b) 125

M4.
(a) 90 seen or implied
$90 \div 6$ or 15
or $90 \div 6 \times 5$ or 75
oe

30

Additional Guidance
30 without working
(b) Angle $L M N=80$

or angle $M L P=58$
 May be on diagram

180-80-58
oe

42

M5.
$A B C=52$
May be on diagram
$B A C=52$
or $B A Q=104$
or $A C B=76$
May be on diagram
$P A B=76$
or $P B A=76$
May be on diagram

28
Clear evidence that 28 is for angle x

Additional Guidance
Angles may be on diagram
$A C B=52$ and $A B C=52$

M6.(a) $O C A=36$

$$
\text { or } A C B=90
$$

or $C O A=108$
or $C O B=72$
or $O B C=54$
or 90-36
or $(180-72) \div 2$
oe
May be on diagram

54
(b) (Triangle) RDC is isosceles
or $R C$ and $R D$ are equal tangents
May be implied from 90 and 45 in triangle RDC

Angle $R D C=y$
or Angle $R C D=y$

Angle $R D C$ or Angle $R C D$ is 45
and
alternate segment (theorem) stated
Strand (ii)
Complete reasons with both B marks scored

M7.(a) 56
(b) 70

Alternate segment (theorem)
Strand (i)
Dependent on B1
(c) 2×47 or 94
or Angle BOA $=47$
or Angle $\mathrm{BOC}=47$
or Angle $B A C=47$
or Angle BCA $=47$
May be on diagram (obtuse angle)

90 or right angle symbol seen at A or

C
or 180-90-47
or $(180-2 \times 47) \div 2$
oe

M8.
(a) 35
(b) 40

Opposite angles of cyclic quad (add up to) 180°
oe
Strand (i) No need to mention 180 if angle given as 40 Accept 'supplementary' to mean adds to 180.
(c) $x=55$
$y=110$ $z=125$

If answer line blank mark diagram or script.
B2 any two correct
$B 2 y=110$ and $x+z=180$
$B 2 z=125$ and $y=2 x$
B1 any one correct
B1 values less than 180 such that $y=2 x$ or $x+z=180$

M9.
Any one of these equations
$2 x+y+20=180$
or
$x+2 y+y+40=180$

```
or
2x+y+20=x+2y+y+40
or
2x+y+20+x+2y+y+40=360
    oe
```

Another of these equations
$2 x+y+20=180$
or
$x+2 y+y+40=180$
or
$2 x+y+20=x+2 y+y+40$
or
$2 x+y+20+x+2 y+y+40=360$
oe these simplify to ... $2 x+y=160$ or $x+3 y=140$ or $x-2 y=20$ or $3 x+4 y=300$
equating coefficients and elimination of x or y for their equations
e.g.
$x+3 y=140$ and $6 x+3 y=480$
or
$2 x+6 y=280$ and $2 x+y=160$
rearrangement and substitution for their equations
e.g.
$y=160-2 x$ and $x+3(160-2 x)=140$
or
$x=140-3 y$ and $2(140-3 y)+y=160$
M1dep

Allow one numerical error for the 3rd M1, but not an error in method (e.g. adding equations when they ought to be subtracted is an error in method, so MO)

$$
\begin{aligned}
5 x=340 \text { or } 5 y= & 120 \\
& \text { ft their elimination or substitution }
\end{aligned}
$$

M1dep
$x=68$ and $y=24$
A1

M10.
(a) Valid reason
e.g. 1 Triangle $O T S$ is isosceles
e.g. $2 O T=O S$
e.g. $3 O T$ and $O S$ are radii
(b) Correct equation
e.g. $15 x=2(x+30)$
e.g. $22.5 x=x+30$
e.g. $3(180-2 x)+120+5 x=360$
e.g. $4 x+30+x+30+360-5 x=360$
oe
Brackets not needed in e.g. 3

Collects terms for their initial equation
e.g. $15 x-2 x=60$
e.g. $22.5 x-x=30$
e.g. $3-2 x+5 x=360-180-120$
oe
their initial equation must have ≥ 2 terms in x Any brackets must be expanded correctly

M11.(a) 70

(b) $A D E=34$
or $A E D=180-70$ or 110
or $A D C=180-70-34$ or 76
Angles seen on diagram must be in correct place
$A D E=34$
and $A E D=180-70$ or 110
M1dep

36

